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Abstract—Ship noise is a major contributor to towed array 
measurement uncertainties that can lead to large estimation 
errors. Many approaches ignore this problem, since they rely on 
inherent narrowband processing to remove these effects. The 
overall signal-to-noise ratio (SNR) available is therefore 
decreased making the signal extraction problem more difficult. 
In this paper we discuss the development of an adaptive model-
based processor (AMBP) for signal enhancement from a set of 
noisy hydrophone measurements contaminated with tow ship 
noise. These results provide a solution to the adaptive joint 
cancellation/signal enhancement problem. Here we concentrate 
on the underlying theoretical development demonstrating the 
relationship between the canceller and model-based signal 
enhancer.  
 

 
I. INTRODUCTION 

 
When an array of hydrophones is towed in an ocean 
environment, the resulting pressure-field measurements are 
contaminated with noise resulting from a variety of sources. 
Besides the usual ocean sounds like background ambients and 
transients, the fact that the array is being towed by a surface 
ship creates broadband flow and cavitation noise as well as 
the usual narrowband spectral lines originating from the 
engine and propellers [1-2]. Attempts to reduce these noises 
and interferences rely on the arguments that only narrowband 
processing is necessary for such tasks as detection, 
localization and tracking; therefore, much of the “ship noise” 
is inherently removed anyway and can be ignored. Some, 
recognizing the detrimental effects of the inherent noise, 
develop simple filters to mitigate it, but unfortunately this 
approach can remove the weak signal being sought and 
therefore might decrease the effective signal-to-noise ratio 
(SNR) [3-4]. A well-known and practical approach to solving 
the signal enhancement and noise cancellation problem is to 
use a reference sensor, close to the ship, to measure the 
inherent noise and develop an optimal noise cancelling 
processor [5]---this is the approach we pursue in this paper. 
We cast the problem into a model-based framework to 
develop a joint cancellation/signal enhancement solution. 
 We formulate the problem as a joint cancellation/signal 

enhancement problem by first designing an optimal noise 
canceller and incorporating it into a model-based estimation 
scheme that also includes a far-field target model [4,6]. Here 
we use weak targets embedded in broadband noise. Next it is 
shown that solving the joint problem improves the detection 
performance of the processor significantly, that is, 
performing the joint cancellation/signal enhancement not 
only enables a more robust processing scheme due its 
inherent flexibility, but also improves overall processing 
performance and therefore enhances the noisy hydrophone 
measurements. We start with the basic cancelling problem 
and then investigate the structure of the processor in the 
model-based framework. It is shown that the joint processor 
can be designed under a wide set of operating conditions with 
the target known and unknown. 

 
II. OPTIMAL NOISE CANCELLING 

 
In this section we briefly develop the optimal noise canceller 
for stationary processes and then extend it to the 
nonstationary case by embedding it into a Gauss-Markov 
framework [6,7]. The basic structure of the noise canceller is 
shown in Fig. 1 where we see that the process is characterized 
by a space-time signal at the -sensor of an L-element 
array in additive white noise as 

th

 ( ; ) ( ; ) ( ; );  1, ,p x t s x t x t Lη= + = , (1) 
for ,  ,  ,p s η the respective measurement, signal and noise at 
position x and time . We also assume that there exists a 
reference signal, , correlated to the noise which can 
be characterized by an invertible impulse response, 

t
( ; )r x t

( ; )H x tη , that is, 

 ( ; ) ( ; ) ( ; )r x t H x t x tη η= ∗ . (2) 
Since it is assumed invertible, we can write the primary 
canceller result [5] that 
 ( ; ) ( ; ) ( ; )x t H x t r x tη = ∗  (3) 

for  1( ; ) : ( ; )H x t H x tη
−= . The optimal noise cancelling 

problem (in terms of this model) is: 



 
GIVEN the set of discrete space-time sensor 
measurements, in additive noise, { ( ; )p x t } ( ; )x tη , 

and reference measurements, { }( ; )r x t  correlated to 
the noise ( ; )x tη  for ; FIND the best 
(minimum error variance) estimate of the noise, 

1, , tt = N

ˆ( ; )x tη , (or equivalently ˆ ( ; )H x t ) such that the 
cancelled output, , is optimal. ( ; )z x t
 

The solution to this problem is well-known [6-9] and leads to 
the optimal cancelling (Wiener) filter given by 
  (4) 1

opt Rrr yr
−=H r

in the stationary case or the adaptive least-mean squared 
(LMS) solution in the nonstationary case [5,6].  Note that the 
purpose of the cancelling filter is to “shape” the reference 
signal such that it best approximates ( ; )x tη , the 
contaminating noise for removal. Thus, we have that the 
cancelled output is 

[ ]ˆ ˆ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )
ˆ           = ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

z x t p x t x t s x t x t x t

s x t x t H x t r x t s x t

η η

η

= − = + −

⎡ ⎤+ − ∗ ≈⎣ ⎦

η
 (5) 

Clearly when η̂ η→ , , the desired result is obtained.  z → s

ξ

 
With this motivation in mind, we construct a Gauss-Markov 
representation of the canceller that will be used in solving the 
joint problem. Note that this approach is equivalent to 
compensating for colored noise [6-8]. Expanding over the L-
elements and using the state-space representation, it is easy to 
show that the noise canceller can be represented (in general) 
by the Gauss-Markov ship noise model as (see Fig. 1) 

 , (6) 

( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t A t t B t r t t

t C t t t

t t t t

ξ ξ

ξ ξ

= − − + − − + −

= +

= + +

ξ ξ w

η ξ v

p s η ν

with 1RNξ ×∈ξ  the colored noise state vector and the 
known scalar reference noise (input) where the additive zero-
mean, white gaussian noise sources have respective 
covariances, 

r

w w v v and R R
ξ ξ ξ ξ

. Here  1, , , L×∈p s η ν C  are 

the respective pressure-field measurement, signal, colored 
and broadband measurement noise with ( )0, ( )vvN R tv ∼ . 

1,  ,  N N N L NA R B R C Rξ ξ ξ
ξ ξ ξ

× ×∈ ∈ ∈

( , ) ( ) ( , ) ( ) for ( , ) ( )H t k C t t k B k t k A t kξ ξ ξ ξ ξ ξ= Φ Φ = −      (7) 
that reduces to  
 ( , )    for    t kH t k C A B t kξ ξ ξ ξ

−= > ,         (8) 
in the time invariant case. So we see that ship noise can be 
completely captured by a Gauss-Markov representation in 
both stationary and nonstationary cases.  
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Fig. 1. Gauss-Markov ship noise model. 
 

We assume that the signal can be characterized by a weak 
target in the far-field of the array given by 
 

 , (9) ( )sin ( )( )( ) o o o oo o i t k x vti t
o os t e e ω θωα α − +− ⋅= =k x

 
for the source parameters: ,  ,  ,  ,  o o o o ok xα ω θ  that are the 
respective amplitude, temporal frequency, wavenumber, 
bearing angle and initial sensor location. Since the array is 
being towed, we include the tow speed, v , as well. We can 
simplify this model by defining the following terms, 
 
 ( )sin( ) ( ) oi t

os t t e oβ θα −= , (10) 

for . Note that the 
statistics are not restricted to be stationary, so we can 
accommodate the nonstationarities (transients, etc.) that occur 
naturally in the ocean environment [9]. 

(o( ) :  and ( ) :oi t
o o o ot e t k x vωα α β= = )t+

 
ξ×  are the system, 

input and measurement matrices corresponding to the ship 
noise model parameters. Note also that the spatial dimension 
is now incorporated in the dimensions of the vector-matrices 
in this model, that is, we have expanded over the L-elements 
in the sensor array,   ;    1, ,x x→ =

Using the Gauss-Markov representation of the noise, we can 
re-define the optimal cancellation problem as: 
 
 GIVEN a set of discrete noisy pressure-field and  
 reference measurements, { }  in  ( ),  ( ) ,  1,2, , tt r t t N=p
 additive noise and the Gauss-Markov model of Eq. (6),  L which gives 

( ; ) ( );  ( ; ) ( )x t t x t  FIND the best (minimum variance) estimate of the ship tη ξ→ η → ξ . Recall that the impulse 
response of the state-space model is 

  noise, , such that the canceller output,  ˆ ( | )t tη



 ˆ( ) ( ) ( | ) ( )p t t t t= − ≈ε tp η s  is optimal. 
 

The recursive solution to this problem is given by the MBP 
(Kalman filter) and shown in Table I (see [6] for details).  
Under the gaussian assumptions, this provides an optimal 
estimator for the noise cancellation problem with known 
signal; however, we must account for the more realistic case 
of an unknown far-field signal. Next we formulate the 
underlying joint estimation problem. 
  

II. ADAPTIVE MODEL-BASED NOISE CANCELLING 
 

In section we use the models developed in the previous 
section to develop the adaptive model-based processor 
(AMBP) for solving the joint cancellation/signal 
enhancement problem. We show that by augmenting the 
cancelling filter into the pressure-field representation that the 
cancelling operation inherently performs the noise 
cancellation as part of the usual filtering operation. 
Adaptivity follows by jointly estimating the target and 
cancelling filter parameters. 
 
 
 

TABLE I 
OPTIMUM NOISE CANCELLATION 

η

                                    NOISE ESTIMATOR
ˆ ˆ( | 1) ( 1) ( 1) ( 1) ( 1)          [Prediction]

ˆˆ ( | 1) ( ) ( | 1)                              [Predicted Noise]
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η η
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ˆ( | 1) ( ) ( | 1)                              [State Est. Error]
                                    CANCELLER
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−
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=
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                           [Filtered Noise]
ˆ ˆ( )     ( ) ( | ) ( ) ( | ) ( )[Cancelled Output]

where ( | 1),  ( | 1) are the state error and covariance.

t t t t t t t t

t t P t tξξ

= − = − ≈

− −

ε p p p η s
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Since is assumed to be a far-field source, we have that at 

the -sensor, 

( )ts
th ( )sin( ) ( ) i ts t t e β θα −= . Now expanding 

over the L -sensor array, we obtain the signal vector 

 ,(11) 
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( )
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1
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For signal enhancement we begin by defining the signal 
vector in terms of its unknown parameters, ( ; )t Θs , (for a 
single target), : [  |  | ]α ω θ ′=Θ . In this case we assume that 
the unknown parameters in the signal model, , are 
characterized as piecewise constant ( ) with a discrete 
Gauss-Markov model given by 

Θ
=Θ 0

 
 ( ) ( 1) ( 1)t t t tΘ= − + Δ −Θ Θ w , (12) 
 
where  and  is the sampling interval. 
This parameter vector is then augmented with the cancelling 
filter by defining the new state vector as 

Θ Θw wN(0, )RΘw ∼ tΔ

(( ) : [ ( ) | ( )] R N Nt t t ξ Θ ) 1+ ×′= ∈x ξ Θ .  The augmented model 
requires more analysis before we develop the MBP solution. 
Consider the augmented state-space model first as: 
 

 

( 1) 0 ( 1)( ) ( 1)
( 1)

( ) ( 1)0 0

( 1)
                                                   

( 1)

A t B tt t
r t

t t

t

t t

ξ ξ

ξ

Θ

− −⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

−⎡ ⎤
+ ⎢ ⎥

Δ −⎣ ⎦

ξ ξ
Θ ΘI

w

w

. (13) 

Here we note that the cancelling filter and parameters are 
decoupled in the state-space and can therefore be written 
directly as 
 

 
( )    ( 1) ( 1) ( 1) ( 1) ( 1)

( )   ( 1) ( 1)

t A t t B t r t t

t t t t
ξ ξ

Θ

ξ= − − + − − + −

= − + Δ −

ξ ξ w

Θ Θ w
 (14) 

 
Next we note that the pressure-field measurement is the 
superposition of three distinct components: far-field signal, 
ship generated noise and instrumentation noise given by 
 
 . (15) 

ship noise measurement noisesignal

( ) ( ; )       ( )       ( )t t t t= + +p s Θ η v

 
First we note from Eq. (6) that the output of the decoupled 
cancelling filter remains ( see Eq. (6) ) 
 
 ( ) ( ) ( ) ( )t C t t tξ ξ= +η ξ v . 
Therefore, substituting into Eq. (15) and accounting for the 
augmented state vector, we obtain 
 

  (16) 
( )

( ) ( )  |  0   ( ; ) ( ) + ( )
( )
t

t C t t t t
tξ ξ
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ξ
p s Θ v v
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Since the far-field signal is a nonlinear function of the 
parameters (augmented states), that is, at the sensor, 

for the single 
target case, then the pressure-field across the array is also a 
nonlinear function, that is, 

th

2( ( )sin( )
1( ; ) ( ) i t k x vti ts t t e eβα Θ − + Θ−= = ΘΘ 3
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Θ

 (17) 

 
Therefore, we have the following approximate model given 
by the underlying augmented Gauss-Markov representation 
as: 
 

 

             (18) 
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1 32
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The basic joint cancelling/signal enhancement problem can 
now be stated in terms of this augmented Gauss-Markov 
representation as: 
 
 GIVEN a set of discrete noisy pressure-field and  
 reference measurements, { }   ( ),  ( ) ,  1,2, , tt r t t N=p
 and the Gauss-Markov model of Eq. (18), FIND the best  

   (minimum variance) estimate of the augmented state   
   (ship noise+signal), , or equivalently, ˆ ( | )t tx ˆ( ; )t Θs and 

ˆ ( | )t tη , such that the canceller output,  
ˆ( ) ( ) ( | )p t t t= −ε p η t  is optimal. 

 
 
We have a linear decoupled state-space, but (unfortunately) a 
nonlinear measurement system requiring a nonlinear 
processor. This problem can be solved by a parametrically 
adaptive MBP using the recursive extended Kalman filter 
(EKF) given in Table II for the augmented system algorithm. 
 

 TABLE II 
JOINT MODEL-BASED PROCESSOR 

[ ] [ ] ξ ξ
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If we decompose the state vector and perform the partitioned 
operations, then we see immediately that the canceling filter 
and signal parameters are estimated “jointly” along with the 
enhanced signal and noise estimates as shown in Table III. 
 

TABLE III 
JOINT MODEL-BASED CANCELLER/ENHANCER 
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To formalize the processor further in terms of our ocean 
acoustic problem, let us first investigate the predicted 
measurement in more detail to focus on the actual operations 
performed. We start with the augmented representation, 
which is a nonlinear function due to the augmentation of the 
parameters, that is, 
 

  ,(19) 
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The corresponding innovations for the adaptive processor can 
also be written in terms of its components as 
 

  . (21) 
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So we see that the joint parametrically adaptive processor is 
capable of not only providing the optimal cancelling solution 

, but also capable of estimating the far-

field target signal for optimal enhancement (
( ˆ ( | 1) ( )t t t− →η

)ˆˆ( ; ) ( )t →s Θ s t . 

 
Using the EKF algorithm it is necessary to provide the 
jacobians for implementation, that is, 
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  (22) 
 
completing the development of the parametrically adaptive 
solution to the joint cancellation/signal enhancement 
problem. Next we summarize our results and discuss future 
efforts. 

  
III. SUMMARY 

 
In this paper we have developed a solution to the joint 
cancellation/signal enhancement problem using a model-
based approach [6].  Starting with the optimal noise canceller 
solution we developed the corresponding model-based 
solution demonstrating their equivalence for the case where 
the signal is known a priori. Next we developed the solution 
to the joint problem with the signal unknown, but 
parameterized as a far-field target. The solution to this 
problem lead to the parametrically adaptive model-based 
processor implemented with the (nonlinear) extended Kalman 
filter (EKF) algorithm. It was shown how to design the 
processor for this problem. 
 
Future efforts will be aimed at applying this technique to both 
simulated and measured hydrophone data. We plan to use the 
discrete implementation of the EKF available in MATLAB 
[10] with the toolbox SSPACK_PC [11]. 
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